F2

Progression in Addition

Addition is commutative.

Addition of positive numbers will give a larger answer
than the start number as you are adding to the set.

U+U TU+U TU+TU HTU+U HTU+TU HTU+HTU ThHTU U+0.t $0 . t+0 . t \quad$ U+0.th $\underset{\substack{\text { Mixed whole numbers } \\ \alpha}}{\substack{\text { decimals }}}$

Misconceptions

- Estimating first to see if their answer 'makes sense'
- Setting out when working in columns confusion over the place value
- Confusion of 'teen' and 'ty'
- Using in number line - count start number so calculation is out by 1

Linked Vocabulary
Add
More
Sum
Total
Make
Greater
Plus
Addition
Increase

F2 and Yi Developmental

$$
7-4=
$$

Use of objects, number tracks \& number lines

See progression - counting to calculating
Y1/M2
$27-14=13$
Use of 100 squares to take tens then
units. Number lines - secure partitioning $2^{\text {nd }}$ number \& counting back T 's then U

- Subtract single digits confidently mentally
- Recall number bonds up to 20
- Partition numbers and recombine
- Understand place value and 'exchange'
- Fluent in subtracting multiples of $10 / 100 / 100$

yas Expanded

$37-14=$	$46-\mathbf{2 8}=$
$T \quad U$	30
307	$40+16$
104	
$20+3=23$	$-\frac{20+8}{10+8=18}$

$12.6-4.3=$

10	12	0.6	smallest tigitit first i.e. unitst tenths etc. Children also thanght to estimate first.

$$
8+0.3=8.3
$$

- Can be removal from set or finding the difference
- Can count on or back to find the difference
- Removal from set is not commutative
Simpler Case \rightarrow Crossing boundary \rightarrow ' 0 ' as a place holder \rightarrow Both involved \rightarrow Mixed number of digits \rightarrow More than 2 sets involved

F2 and Yı Developmental

What is the difference between 7 and 4
Use of objects, number tracks \& number lines

$$
27-14=13
$$

Number lines - can count fwds/bwds, bridge to T then multiples of 10

$$
67-34=
$$

Number lines - without bridging to the nearest 10
Use of 100 squares to count on.
Number lines - secure partitioning $2^{\text {nd }}$ number \& counting on or back T's then U

y34 Expanded

Complimentary Addition: counting up $167-154=$

Compact YMS

$$
67-34=
$$

$$
67
$$

-34
6
6
20
7 (40)
(60) 33 754

- $\frac{286}{14}$ 14 (300) $\underline{454}$ (754) 468
-
- Subtract single digits confidently mentally
- Bridge to the nearest 10
- Add multiple to $10 / 100$ to multiples / count fwds/bwds in 10/100 from any given number
- Partition into HTU
- Add several numbers mentally
- Secure addition strategy
U-U TU-U TU-TU HTU-U HTU-TU HTU-HTU ThHTU U-0.t 0.t-0.t U-0.t $h_{\&}^{\text {Mixed whole numbers }}$

Misconceptions

- Estimating first to see if their answer 'makes sense'
- Setting out when working in columns confusion over the place value
- Confusion of 'teen' and 'ty'
- Using in number line - count start number so calculation is out by 1
- Misunderstanding regarding place value and concept of exchanging \mathbf{T} for ones, \mathbf{H} for Tens etc
- Lack of understanding that when subtracting from a number that the answer will be smaller than start number as removing from it
- Children switch the digits around to be able to 'do' the calculation (believe it is commutative as with $+/ \mathrm{x}$)

Linked Vocabulary

Take
Take-away
Leave
Left
Fewer
Less than
Decrease
Difference between
Minus
Subtract Subtraction

Progression in Multiplication ${ }_{\text {(shortmultiplaction) }}$

F2 and Y1 Developmental

3 lots of $5=15$
Use of objects, number tracks \& number lines. Link initially to repeated +

Representation as an array using a variety of apparatus (Dienes, pegs, counters etc)

$4 \times 13=$
$10 \times 4=40$

Ya4 Expanded
 YNS

$$
22 \times 14=
$$

UxU	UxTU	UxHTU	UxThHTU	Ux0.t	U+0.th
$\substack{\text { Mixed whole numbers } \\ \text { \& decimals }}$					

Progression in Multiplication (Longmultipication)

Multiplication is commutative.

Simpler Case ($1 \times 10 / 100$ - as in examples given) \rightarrow Multiples of $10 / 100(3 \times 235) \rightarrow$ ' 0 ' as a place holder \rightarrow Both involved \rightarrow Mixed number of digits

F2 and YY Developmental

3 lots of $5=15$
Use of objects, number tracks \& number lines. Link

Representation as an array using a variety of apparatus (Dienes, pegs, counters etc)

$4 \times 13=$
 * NB. use apparatus to model TUxTU \& HTUxTU etc

- Recall tables up to 12×12 (by the end Y 4)
- Partition numbers into HTU
- Multiply by 10/100
- Secure addition strategy calculating total
$14 \times 123=$

	100	20	3
10	1000	200	30
4	400	80	12

$$
\text { = } 1722
$$

TUxTU TUxHTU ThHTUxTU Decimals up to $2 \mathrm{dp} \times$ whole numbers

Misconceptions

- Understanding on multiplying by $10 / 100$ and what happens to place value of the number
- Rapid recall of multiplication tables is not secure and impacting of accuracy of calculation
- Interpretation of digits in the T/H columns as single digits eg 4×3 instead of 4×30
- Children should be taught to recall multiplication facts and given strategies to quickly work out unknown facts.

Year One-2, 5 and 10
Year Two - 2, 5, 10 and 3
Year Three-2, 5, 10, 3, 4 and 8
Year Four - all tables.

Models \& Images

Linked Vocabulary
Repeated addition
Groups of
Lots of
Multiply
Times
Multiplication
Product
Array

Progression in Division

Misconceptions

- Lack of understanding of 'remainders' and their importance to the context of the problem
- Insecure understanding of place value to know what each digit is representing
- Unable to derive facts from known facts and 'play' with numbers
- Approximations are wildly inaccurate so answers cannot be judged in the context of the problem/calculation
- No method to 'fall back' on where use of a formal method won't work
- Instant recall of and strategies to quickly work out division facts related to the times tables for their year group should be taught.

Linked Vocabulary

Divisor
Divisible
Divide
Group
Share
Chunk
Remainder
Sharing / shared Equal groups

